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Abstract. This communication deals with an alternating iterative algorithm proposed by Kozlov et

al. [6] for obtaining approximate solutions to the ill-posed Cauchy problem. In particular, the application
to anisotropic elasticity is analysed, whilst the boundary element method (BEM) is used for the nume-
rical implementation. The numerical results confirm that the iterative BEM produces a convergent and
stable numerical solution with respect to increasing the number of boundary elements and decreasing the
amount of noise added into the input data.

1. INTRODUCTION
In solving physical problems in solid mechanics one usually deals with direct problems, but sometimes
one or more of the conditions for solving them are not available. Therefore an inverse problem may be
formulated to determine the unknowns from specified or measured system responses. It is well known
that inverse problems are in general unstable, see e.g. Hadamard [1], and hence a suitable algorithm is
required in order to solve them. The Cauchy problem in elasticity, in which both the displacement and
the traction vectors are known on a part of the boundary and no data are available on the remaining
boundary, is a classical example of an inverse problem in solid mechanics. There are important studies
in the literature for solving the problem for isotropic elastic materials, many of them based on the FEM,
see e.g. Maniatty et al. [2] and Schnur and Zabaras [3], and lately, using BEM techniques, see e.g. Marin
et al. [4, 5]. Also methods of obtaining an approximate solution to ill-posed boundary value problems
have been discussed extensively, iterative methods being the most recently developed. These have two
main advantages, namely they allow any physical constraint and they have a computational scheme very
simple to be implemented as a sequence of well-posed problems. Based on these reasons, in this study we
have used the BEM in order to implement a convergent algorithm for anisotropic linear elastic materials.
It consists of an alternating iterative procedure which solves successive well-posed mixed boundary value
problems. It was originally proposed by Kozlov et al. [6] and then implemented for isotropic linear elastic
solids by Marin et al. [4, 5].

2. MATHEMATICAL FORMULATION OF THE CAUCHY PROBLEM IN
TWO-DIMENSIONAL ANISOTROPIC ELASTICITY
Consider an anisotropic linear elastic homogeneous solid Ω ⊂ R

3 bounded by a smooth surface Γ in the
sense of Liapunov, such that Γ = Γ1 ∪ Γ2, where Γ1,Γ2 6= ∅ and Γ1 ∩ Γ2 = ∅. In particular, we consider
the case when the geometry and the loading conditions describe a pure plane strain state. Therefore, the
problem can be simplified to a two-dimensional study. In the presence of body forces b, the equilibrium
equations of the elastic medium are given by, see e.g. Lekhnitskii [7],

div(σ(u)) + b = 0 in Ω, (1)

where σ is the stress tensor. On assuming small deformations only, the strain tensor ε is defined by the
following kinematic relations:

ε =
1

2

(
∇u + ∇T u

)
in Ω, (2)

is related to the stress tensor σ by Hooke’s constitutive law, namely

σ = C : ε in Ω, (3)
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where C is the elasticity tensor of order four. In two-dimensional anisotropic linear elastic solids, the
constitutive relation (3) is usually expressed using a mono-index notation 1

σi = cijεj , εi = aijσj , i, j = 1, . . . 6, (4)

where εj is the strain tensor, cij is the elasticity tensor and aij is the compliance tensor.
Direct problems are solved taking into account equations (1) − (3), together with the knowledge of

the displacement and/or the traction vectors on the entire boundary Γ. It should be mentioned that
analytical solutions can be found only for a limited number of cases, i.e. for simple geometries and
boundary conditions. Then, if the complex potential theory [7] is used, the anisotropic linear elastic
problem can be expressed in terms of the complex potentials Φi(zi) = F ′

i (zi), where the stress function
F (x1, x2) has been introduced as

F (x1, x2) = <[F1(z1) + F2(z2)] + F0(x1, x2). (5)

Here Fi(zi), i = 1, 2, are two arbitrary analytical functions of the complex variables zi = x1 + µix2 and
F0 is a particular solution of the field equations. The complex parameters µi are always two conjugate
pairs, roots of the characteristic fourth degree polynomial equation

β11µ
4 − 2β16µ

3 + (β12 + β66)µ
2 − 2β16µ + β22 = 0, (6)

where βij are called the reduced elastic constants whose values are given by βij = aij for the plane stress
state and βij = aij − (ai3aj3)/a33 for the plane strain state.

The following general expressions for stresses and displacements, respectively, can be obtained if no
body forces are acting on the anisotropic solid:

σ1 = 2<[µ2
1Φ

′

1 + µ2
2Φ

′

2], σ2 = 2<[Φ′

1 + Φ′

2], σ6 = −2<[µ1Φ
′

1 + µ2Φ
′

2] (7)

u1 = 2<[p11Φ1 + p12Φ2] − ωx2 + u0, u2 = 2<[p21Φ1 + p22Φ2] + ωx1 + v0 (8)

where u0, v0 and ω represent a simultaneous rigid-body motion and the material parameters pik, i, k =
1, 2, are given by

p1k = β11µ
2
k + β12 − β16µk, p2k = β12µk +

β22

µk

− β26, k = 1, 2. (9)

If it is possible to measure both the displacement and traction vectors on a part of the boundary Γ,
say Γ2 ⊂ Γ, and there is no information on the remaining boundary Γ1 = Γ \ Γ2 then this leads to the
mathematical formulation of an inverse problem consisting of the equilibrium equation (1) (for simplicity,
in the absence of body forces, i.e. b = 0) and the given overspecified boundary conditions on Γ2, namely





div(σ(u)) = 0 in Ω
u = ũ on Γ2

t = t̃ on Γ2.
(10)

Here ũ and t̃ are prescribed vector valued displacements and tractions, respectively. The Cauchy problem
is much more difficult to solve since its solution does not satisfy the general conditions of well-posedness
and hence regularization must be employed in order to solve stably this inverse problem. Therefore,
knowing the exact data ũ and t̃ on the boundary Γ2, we use a convergent iterative regularizing algo-
rithm, originally proposed by Kozlov et al. [6] and implemented for isotropic linear elastic media by Marin
et al. [4, 5].

3. DESCRIPTION OF THE ALGORITHM
In this communication, the approach proposed for solving the Cauchy problem is based on a convergent
iterative algorithm. It was proposed by Kozlov et al. [6] for Cauchy problems associated to linear, elliptic,
self-adjoint and positive-definite operators. This algorithm consists of the following steps:

Step 1.1. Set k = 0. Specify an initial approximation t
(0) for the tractions on the underspecified

boundary Γ1.

1
11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6
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Step 1.2. Solve the mixed boundary value problem





div
(
σ

(
u

(1)
))

= 0 in Ω

t
(1) ≡ σ

(
u

(1)
)
· n = t

(0) on Γ1

u
(1) = ũ on Γ2

(11)

in order to determine the displacements u
(1) in Ω and on Γ1.

Step 2.1. Having constructed the approximation u
(2k−1), k > 0, the mixed boundary value

problem





div
(
σ

(
u

(2k)
))

= 0 in Ω
u

(2k) = u
(2k) on Γ1

t
(2k) ≡ σ

(
u

(2k)
)
· n = t̃ on Γ2

(12)

is solved to determine the displacements u
(2k) in Ω and the tractions t

(2k) ≡ σ
(
u

(2k)
)
· n on Γ1.

Step 2.2. Having constructed the vector-valued function u
(2k), k > 0, the mixed boundary value

problem





div
(
σ

(
u

(2k+1)
))

= 0 in Ω

t
(2k+1) ≡ σ

(
u

(2k+1)
)
· n = t

(2k) on Γ1

u
(2k+1) = ũ on Γ2

(13)

is solved in order to determine the displacements u
(2k+1) in Ω and on Γ1.

Step 3. Set k = k +1 and repeat steps 2.1 and 2.2 until a prescribed stopping criterion is satisfied.

Kozlov et al. [6] showed that if Γ is smooth, the alternating algorithm based on steps 1 − 3 produces
two sequences of approximate solutions

{
u

(2k)(x)
}

k>0
and

{
u

(2k−1)(x)
}

k>0
which both converge to the

solution u(x) of the Cauchy problem (10) for any initial guess t
(0). The same conclusion is obtained if at

the step 1.1 we specify an initial guess u
(0) and we modify accordingly the steps 1 and 2 of the algorithm.

Problems (11)− (13) are well-posed and solvable using a numerical approach. Passing from one iteration
to the next, only the values of the displacement and traction vectors on the boundary Γ are required.
If we also take into account that the BEM performs better than domain discretisation methods, such as
the finite difference method (FDM) and the FEM, for problems with linear partial differential equations
[8] then the BEM is the most suitable numerical technique for solving the intermediate mixed boundary
value problems.

4. THE BOUNDARY ELEMENT METHOD (BEM)
The BEM is based on the boundary integral representation of the displacements. This technique is de-
rived from Betti’s Reciprocity Theorem applied to the actual elastostatic state in the domain Ω and an
auxiliary field called the fundamental solution.

4.1. Fundamental solution
The fundamental solution is the response of a system at a point z due to a point load applied at z′ in an
infinite domain with the same material properties as the original problem. When a unit load is applied
in the xi−direction, the solution is given by the complex potential, see e.g. Sollero [9],

Φis(zs) = Ais ln(zs − z′s) (14)

where Ais are complex constants. These constants can be computed by employing the system of equations
obtained from the implementation of the boundary conditions, namely




1 −1 1 −1
µ1 −µ̄1 µ2 −µ̄2

p11 −p̄11 p12 −p̄12

p21 −p̄21 p22 −p̄22







Ai1

Āi1

Ai2

Āi2


 =




δi2

2πi
δi1

2πi
0
0




(15)

C05
3



The fundamental solution for the displacements is obtained in the following form:

Uij(z, z
′) = 2

2∑

s=1

< [pjsAis ln (zs − z′s)] , (16)

while the corresponding fundamental tractions on the boundary are given by

Tij(z, z
′) = 2

2∑

s=1

<

[
qjsAis

zs − z′s
(µ1n1 − n2)

]
, (17)

where q1s = µs, q2s = −1 and ni are the components of the outward normal vector n at Γ.

4.2. Boundary integral equation
Once the auxiliary state is defined, we recall Betti’s Reciprocity Theorem which is applied to two balanced
systems of boundary and body forces (t,b) and (t∗,b∗). These systems of forces are applied to the same
anisotropic elastic domain characterised by the displacement fields u and u∗, respectively. If the ∗ state
is the one given by the fundamental solution then

b∗j = δij δ(z − z′), t∗j = Tij(z, z
′), u∗

j = Uij(z, z
′), (18)

where δij is the Kronecker delta tensor, δ is the Dirac delta distribution and z′ is a point inside the
solution domain Ω. On assuming that no body forces act on the solid, i.e. b = 0 in (1), then Somigliana
identity is obtained as

ui(z
′) +

∫

Γ

Tij(z, z
′)uj(z) dΓ =

∫

Γ

Uij(z, z
′)tj(z) dΓ. (19)

By moving z′ to the limit to boundary point y ∈ Γ, i.e. z′ → y we obtain the boundary integral
equation (BIE) which governs the elastic displacement field and is given by

cij(y)uj(y) +

∫

Γ

Tij(z,y)uj(z) dΓ =

∫

Γ

Uij(z,y)tj(z) dΓ, (20)

where the free term cij(y) depends on the location of the collocation point z′, see Paŕıs and Cañas [8].
Finally, on differentiating equation (19) with respect to the coordinates of the collocation point z′ ∈

Ω \ Γ then the integral equation for the strains is obtained as

εik(z′) =

∫

Γ

Vijk(z, z′)tj(z) dΓ −

∫

Γ

Sijk(z, z′)uj(z) dΓ. (21)

For details on the computation of the new kernels Vijk and Sijk, we refer the reader to [10].

4.3. Discretisation of the problem
In order to solve numerically the BIE (20), the boundaries Γ, Γ1 and Γ2 are discretised into Ne, N1

e

and N2
e elements, respectively, such that N 1

e + N2
e = Ne. The geometry, displacements and stresses are

interpolated over each element using their values at the nodes and some shape functions φm. For every
collocation point l with the coordinates yl the BIE (20) can be written in discretised form as

cijuj(l) +

Ne∑

k=1

3∑

m=1

hm
ij (l, k)uk

j (m) =

Ne∑

k=1

3∑

m=1

gm
ij (l, k)tkj (m), (22)

where the integration constants hm
ij (l, k) and gm

ij (l, k), i, j = 1, 2, m = 1, 2, 3, are given by

hm
ij (l, k) =

∫ 1

−1

− Tij(z(ξ),y
l)φm(ξ)Jk(ξ) dξ, gm

ij (l, k) =

∫ 1

−1

Uij(z(ξ),y
l)φm(ξ)Jk(ξ) dξ. (23)

In this study, isoparametric quadratic elements have been used such that if the boundary Γ is closed
and is discretised into Ne elements then the total number of boundary nodes is given by N = 2Ne.
Consequently, the numbers of boundary nodes corresponding to the underspecified Γ1 and overspecified
Γ2 boundaries are given by N1 = 2N1

e and N2 = 2N2
e , respectively, such that N1 + N2 = N . Integration
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constants computation can be checked in [10].
On applying equation (22) for all the boundary nodes, we obtain the following system of linear

algebraic equations:
HU = GT, (24)

where U and T are vectors containing the nodal values of the displacements and tractions, respectively.
The discretisation of the boundary conditions (102) and (103) provides the values of 4N2 of the unknowns
and the problem reduces to solving a system of 2N equations with 4N1 unknowns which can be generically
written as

CX = F, (25)

where the matrix C ∈ R
2N×4N1 depends solely on the geometry of the boundary and the material prop-

erties, the vector X ∈ R
4N1 contains the unknown values of the displacements and the tractions on the

boundary Γ1 and the vector F ∈ R
2N is computed using the Cauchy boundary conditions (102) and (103).

5. NUMERICAL RESULTS
In this section we illustrate the numerical results obtained using the alternating iterative algorithm pre-
sented in Section 3, in conjunction with the BEM described in Section 4. In addition, we investigate the
convergence with respect to the mesh size discretisation and the number of iterations when the data are
exact and the stability when the data are perturbed by noise.

5.1. Examples
Two test examples in a two-dimensional smooth geometry (a condition required by the theoretical analysis
of Kozlov et al. [6]) are used to prove the performance of the numerical method proposed. The Cauchy
problem is defined for an annular domain Ω =

{
x = (x1, x2)

∣∣r2
i < x2

1 + x2
2 < r2

o

}
, ri = 1, ro = 4. We

assume that the boundary Γ of the solution domain is divided into two disjointed parts, namely Γ1 =
Γi ≡

{
x ∈ Γ

∣∣ x2
1 + x2

2 = r2
i

}
and Γ2 = Γo ≡

{
x ∈ Γ

∣∣ x2
1 + x2

2 = r2
o

}
in the case of Example 1, and

Γ1 = {x ∈ Γi | α1 ≤ Θ(x) ≤ α2 } and Γ2 = Γo∪{x ∈ Γi | 0 ≤ Θ(x) < α1 }∪{x ∈ Γi | α2 < Θ(x) ≤ 2π } in
the case of Example 2, where Θ(x) is the angular polar coordinate of x and αi, i = 1, 2, are specified angles
in the interval (0, 2π). In order to illustrate the typical numerical results we have taken α1 = π/4 and
α2 = 3π/4. In the following examples we consider an orthotropic linear elastic medium (birch plywood),
whose material orthotropy axes coincide with the axes of the Cartesian reference system. The orthotropic
solid considered in this study is characterised by the engineering elastic constants E1 = 11.76 GN/m2,
E2 = 5.88 GN/m2, G12 = 0.686 GN/m2 and ν12 = 0.071 and hence the compliance elastic constants are
given by a11 = 0.08503 m2/GN, a12 = −0.006037 m2/GN, a22 = 0.1701 m2/GN, a66 = 1.4577 m2/GN
and a16 = a26 = 0.0 m2/GN.

Example 1. We consider a stress state corresponding to constant internal and external pressures
σi = 1.0 GN/m2 and σe = 2.0 GN/m2, respectively.

Example 2. We consider a uniform hydrostatic stress state given by σe = 1.5 GN/m2.

Analytical expressions for the stresses σ
(an) and displacements u(an) are not available in this case.

However, these can be obtained numerically by solving a direct problem with a very fine mesh in order
to obtain the best numerical approximations. Hence the Cauchy problem considered in this paper is
described by equation (10) in which the Cauchy data are given by t̃ = t(an) and ũ = u(an). In the se-
quel, the analytical traction vector t(an) and the corresponding displacement vector u(an) will be referred
to as “exact” traction and displacement vectors, respectively. The Cauchy problems given by equation
(10) for the examples considered in this study have been solved iteratively using the BEM to provide
simultaneously the unspecified boundary displacement and traction vectors on the boundary Γ1. The
number of isoparametric quadratic boundary elements used for discretising the boundary Γ was taken to
be Ne ∈ {32, 48, 96} such that both the underspecified and the overspecified boundaries Γ1 and Γ2, re-
spectively, were discretised into the same number of isoparametric quadratic boundary elements, namely
Ne/2 ∈ {16, 24, 48}.

5.2. Initial guess
An arbitrary vector valued function t(0) may be specified as an initial guess for the traction vector on
Γ1, but in order to improve the rate of convergence of the iterative procedure we have chosen a vector
valued function which ensures the continuity of the traction vector at the endpoints of Γ1 and which is
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also linear with respect to the angular polar coordinate Θ. For the test Example 2, this initial guess is
given by

t(0)(x) =
α2 − Θ(x)

α2 − α1
t(0)(x1) +

Θ(x) − α1

α2 − α1
t(0)(x2), (26)

where αi = Θ(xi) for i = 1, 2, x1 and x2 are the endpoints of Γ1, and the choice of α1 = π/4 and
α2 = 3π/4 also ensures that the initial guess is not too close to the exact values t(an)(x).

In the case of Example 1, we cannot use the procedure described above and, therefore, the initial
guess has been chosen as

t(0)(x) = 0. (27)

5.3. Convergence of the algorithm
The convergence of the algorithm has been studied evaluating, at each iteration, the accuracy errors
defined by

Eu = ‖u(k) − u(an)‖L2(Γ1)×L2(Γ1), (28)

Et = ‖t(k) − t(an)‖L2(Γ1)×L2(Γ1), (29)

where u(k) and t(k) are the displacement and the traction vectors on the boundary Γ1 retrieved after k
iterations, respectively, and each iteration consists of solving the two mixed well-posed problems men-
tioned in Section 3. The error in predicting the displacement vector inside the solution domain Ω may
also be evaluated by using the expression

EΩ = ‖u(k) − u(an)‖L2(Ω)×L2(Ω), (30)

but it has an evolution similar to that of the errors Eu and Et, since the displacement values inside the
solution domain are retrieved from the values of the displacement u and traction t on the boundary Γ.

When starting with the initial guess t(0) given by equations (27) and (26) for Examples 1 and 2,
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Figure 1: The accuracy errors Eu (left) and Et (right), as functions of the number of iterations k, obtained
using three different BEM meshes for the Example 1.

respectively, a sequence
{
u(k)

}
k>0

of approximation functions for u|Γ1
is obtained and, according to

Kozlov et al. [6], this sequence converges to the exact solution. If we evaluate the errors Eu and Et at
every iteration, in the case of Example 1, then we note that both these errors keep decreasing with respect
to increasing the number of iterations performed only for the finest BEM mesh, i.e. Ne = 96, see Figure
1. On the contrary, if the coarser BEM discretisations are used, i.e. Ne = 32, 48, then the accuracy
errors given by expressions (28) and (29) attain a minimum value after a certain iteration number, k,
after which they start increasing. However, the errors Eu and Et corresponding to the Cauchy problem
given by Example 2 have a decreasing tendency as k increases for all the BEM discretisations used. A
possible explanation for the different behaviours of the accuracy errors Eu and Et for Examples 1 and 2
is represented by the type of initial guess used for each of the Cauchy problems analysed. More precisely,
the initial guess corresponding to Example 2 ensures the continuity of the traction vector at the endpoints
of the underspecified boundary Γ1, whereas the initial guess for the Example 1 is the constant vector zero
which contains no information about the unknowns on Γ1, see equations (26) and (27), respectively.

Figures 3 and 4 present the exact and the BEM numerical solutions for the displacement u1 and the
traction t2 on the underspecified boundary Γ1, obtained for the Cauchy problems given by Examples
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Figure 2: The accuracy errors Eu (left) and Et (right), as functions of the number of iterations k, obtained
with three different BEM discretisations for the Example 2.

1 and 2, respectively. From these figure it can be seen that the numerical results for both u1 and t2
retrieved for the Example 1 are more accurate than those corresponding to Example 2. The reason for
this is that Γ1 ∩ Γ2 = ∅ in the case of Example 1, whilst Γ1 ∩ Γ2 6= ∅ in the case of Example 2, i.e. there
exist two points where the problem changes to mixed boundary conditions.
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EXACT SOLUTION
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q

Figure 3: The exact and the numerical solutions for the displacement u1 (left) and traction t2 (right),
obtained using various BEM discretisations for the Example 1.

5.4. Variable relaxation factor
The errors in predicting the traction t2|Γ1

in the case of Example 2 are still large, especially for the
elements close to the ends of the underspecified boundary Γ1, see Figure 5. In order to save on both,
computational time and computer storage, and to improve the results for the traction vector on the
underspecified part of the boundary, we relax the marching condition (13) through the use of

t(2k+1) = σ

(
u(2k+1)

)
· n = ρt(2k) + (1 − ρ)t(2k−1) on Γ1 (31)

when passing from step 2.1 to step 2.2 of the algorithm described in Section 3, where ρ is a relaxation
parameter to be prescribed.

By a thorough inspection of the numerical solution for the traction vector on Γ1 obtained after various
numbers of iterations without relaxation, we noticed that at the endpoints of the underspecified boundary
the rate of convergence is higher than elsewhere on Γ1. After a few iterations the numerical solution for
the traction vector at the endpoints of Γ1 approaches the exact solution and after that, as we increase the
number of iterations, it deviates from the exact traction whilst elsewhere on Γ1 the numerical traction
still approaches the exact value. The high rate of movement of the numerical traction at the endpoints
of Γ1 in comparison with its rate of movement elsewhere on the underspecified boundary suggests the
introduction of a variable relaxation factor ρ = ρ (Θ(x)) which is small at the endpoints of Γ1 and has a
maximum value, say A, in the middle of Γ1. The variable relaxation factor was chosen as, see also Marin
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Figure 4: The exact and the numerical solutions for the displacement u1 (left) and traction t2 (right),
obtained using various BEM discretisations for the Example 2.

et al. [4] and Mera et al. [11],

ρ (Θ(x)) = A sin

(
Θ(x) − α1

α2 − α1
π

)
, (32)

where A ∈ (0, 2]. Figure 5 illustrates more accurate estimates for the traction t2|Γ1
, obtained using the

variable relaxation factor (31) with A = 1.5 although similar results can be obtained with A ∈ (0, 2].
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No relaxation factor

A=1.5

q

Figure 5: The exact and numerical solutions for the displacement u1|Γ1
, obtained using Ne = 48 elements

in two cases, namely without relaxation factor and with a variable relaxation factor with amplitude
A=1.5, for the Example 2.

5.5. Stopping criterion
Let the displacement vector on the overspecified boundary Γ2 be perturbed as ũi|Γ2

= ui|Γ2
+ δui,

i = 1, 2, where δui, i = 1, 2, is a Gaussian random variable with mean zero and standard deviation
σ = max

Γ2

|ui| × (p/100), i = 1, 2, and p is the percentage of noise added into the input data ui|Γ2
. In

Figure 6 we present the accuracy errors Eu and Et corresponding to Example 1 for various levels of noise,
namely p ∈ {1, 3, 5}. It can be seen from this figure that both errors Eu and Et decrease up to a certain
number of iterations, after which they start increasing. If the process is continued beyond this point then
the numerical solutions lose their smoothness and become highly oscillatory and unbounded. Therefore,
a regularizing stopping criterion must be used in order to cease the iterative process at the point where
the errors in the numerical solutions start increasing.

If we evaluate the Euclidean norm of the vector CX − F then this should tend to zero as X tends
to the exact solution. Hence after each iteration we evaluate the error

k ∈ N : E = ‖CX(k) − F‖2 (33)

where X(k) is a vector containing the components of the displacement and traction vectors on the un-
derspecified boundary Γ1 retrieved after k iterations. The error E includes information on both the
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Figure 6: The accuracy errors Eu (left) and Et (right), as functions of the number of iterations k, obtained
using Ne = 48 and several amounts of noise added into the input data u|Γ2

, for the Example 1.
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Figure 7: The convergence error E = ‖CX − F‖2, as a function of the number of iterations, k, obtained
using N = 48 isoparametric quadratic boundary elements and various amounts of noise added into the
input data u|Γ2

, namely p = 0%( ), p = 1%(×), p = 3%(−−) and p = 5%(◦), for the Cauchy problem
considered in Example 1.

displacement and the traction vectors on Γ2 and it is expected to provide an appropriate stopping cri-
terion. Indeed, if we investigate the error E obtained at every iteration for various levels of Gaussian
random noise added into the input displacement data ũ|Γ1

, we obtain the curves represented graphically
in Figure 7. Although more rigorous stopping criteria, such as the discrepancy principle [13] or the gen-
eralized cross-validation [14], could have been used, an L-curve type criterion which ceases the iterative
procedure at the iteration number, kopt, corresponding to the corner in the curve represented in Figure 7
has been chosen as the stopping criterion, see e.g. Hansen [12]. From Figures 6 and 7 it can be seen that
the proposed stopping criterion is very efficient in locating the point where the errors in the numerical
solution increase and the iterative process should be terminated.

5.6 Stability of the algorithm
Based on the stopping criterion described in the previous section, the numerical results for the displace-
ment u1 and the traction t2 on the underspecified boundary Γ1, obtained using various levels of noise
added into the displacement vector on the boundary Γ2, for the Example 1, are presented in Figure 8.
From this figure it can be seen that the numerical solution is a stable approximation to the exact solution,
free of unbounded and rapid oscillations.

6. CONCLUSIONS
In this paper, the Cauchy problem for two-dimensional anisotropic linear elasticity was investigated. In
order to deal with the instabilities of the solution of this ill-posed problem, an alternating iterative BEM
was employed which reduced the Cauchy problem to solving a sequence of well-posed mixed boundary
value problems. A stopping criterion, necessary for ceassing the iterations at the point where the accu-
mulation of noise becomes dominant and the errors in predicting the exact solution increase, has also
been presented. The numerical results for various BEM discretisations and various levels of noise added
into the input data showed that the BEM produces a convergent, stable and consistent numerical solu-
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tion with respect to increasing the number of boundary elements and decreasing the amount of noise.
Moreover, the accuracy of the numerical solution has been improved by using a variable relaxation factor.
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Figure 8: The exact and the numerical solutions for the displacement u1 (left) and the traction t2 (right)
on the underspecified boundary Γ1, obtained using Ne = 48 elements and various amounts of noise added
into input data u|Γ2

, for the Example 1.
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